Krüppel-Like Factor 4 Inhibits the Transforming Growth Factor-β1-Promoted Epithelial-to-Mesenchymal Transition via Downregulating Plasminogen Activator Inhibitor-1 in Lung Epithelial Cells
نویسندگان
چکیده
Transforming growth factor-β (TGF-β) signaling and TGF-β-promoted epithelial-to-mesenchymal transition (EMT) have been postulated to be the common pathway causing pulmonary fibrosis. However, the up- or downstreaming markers of TGF-β-induced EMT still need to be further recognized. In the present study, we investigated the regulation on Krüppel-like factor 4 (KLF-4) and plasminogen activator inhibitor-1 (PAI-1) by TGF-β in the murine lung epithelial LA-4 cells and then examined the regulation of both markers in the TGF-β-induced EMT by the PAI-1 knockdown or the KLF-4 overexpression. Our study indicated that TGF-β induced EMT in mouse LA-4 lung epithelial cells via reducing E-cadherin, while promoting Collagen I and α-SMA. And PAI-1 was upregulated, whereas KLF-4 was downregulated in the TGF-β-induced EMT model in LA-4 cells. Moreover, the siRNA-mediated PAI-1 knockdown inhibited the TGF-β-induced EMT, whereas the adenovirus-medicated KLF-4 overexpression markedly reduced the PAI-1 expression and inhibited the TGF-β-induced EMT in LA-4 cells. In conclusion, our study confirmed the downregulation of KLF-4 in the TGF-β-induced EMT in LA-4 cells. And the KLF-4 overexpression significantly reduced the TGF-β-induced PAI-1 and thus inhibited the TGF-β-induced EMT in mouse lung epithelial LA-4 cells. It implies that KLF-4 might be a promising target for effective control of the pulmonary fibrosis.
منابع مشابه
Fasudil, a Rho-Kinase Inhibitor, Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice
The mechanisms underlying the pathogenesis of idiopathic pulmonary fibrosis (IPF) involve multiple pathways, such as inflammation, epithelial mesenchymal transition, coagulation, oxidative stress, and developmental processes. The small GTPase, RhoA, and its target protein, Rho-kinase (ROCK), may interact with other signaling pathways known to contribute to pulmonary fibrosis. This study aimed t...
متن کاملTransforming growth factor β1 promotes migration and invasion in HepG2 cells: Epithelial-to-mesenchymal transition via JAK/STAT3 signaling
Transforming growth factor β1 (TGFβ1) is a cytokine with multiple functions. TGFβ1 significantly induces migration and invasion of liver cancer cells. However, the molecular mechanisms underlying this effect remain unclear. Epithelial‑to‑mesenchymal transition (EMT) is crucial for the development of invasion and metastasis in human cancers. The aim of the present study was to determine whether ...
متن کاملUp-regulation of Syndecan-4 contributes to TGF-β1-induced epithelial to mesenchymal transition in lung adenocarcinoma A549 cells
Syndecan-4 (SDC4) is a cell-surface proteoglycan associated with cell adhesion, motility, and intracellular signaling. Here, we present that SDC4 functions as a positive regulator of the transforming growth factor (TGF)-β1-induced epithelial to mesenchymal transition (EMT) via Snail in lung adenocarcinoma, A549 cells. TGF-β1 up-regulated the expression of SDC4, accompanied by the induction of E...
متن کاملVasohibin‐2 is required for epithelial–mesenchymal transition of ovarian cancer cells by modulating transforming growth factor‐β signaling
Vasohibin-2 (VASH2) is a homolog of VASH1, an endothelium-derived angiogenesis inhibitor. Vasohibin-2 is mainly expressed in cancer cells, and has been implicated in the progression of cancer by inducing angiogenesis and tumor growth. Although VASH2 has been recently reported to be involved in epithelial-mesenchymal transition (EMT), its precise roles are obscure. The aim of the present study w...
متن کاملSuppression of epithelial-mesenchymal transition in hepatocellular carcinoma cells by Krüppel-like factor 4
Hepatocellular carcinoma (HCC) is one of the most malignant and lethal human cancers. Epithelial-mesenchymal transition (EMT) enhances the carcinogenesis of HCC, and therapies targeting EMT appear to be promising treatments. We have previously shown that Krüppel-like factor 4 (KLF4) suppressed EMT of HCC cells through downregulating EMT-associated proteins. Here, we examined the roles of microR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015